On the realism of the rain microphysics representation of a squall line in the WRF model.

Part I: Evaluation with multifrequency cloud radar Doppler spectra observations

FREDERIC TRidon
Earth Observation Science, Department of Physics and Astronomy, University of Leicester, Leicester, UK

CLErNE PlANCHe
Université Clermont Auvergne, INSU-CNRS UMR 6016, Laboratoire de Météorologie Physique, F-63000 Clermont-Ferrand, France

KAMI. MROZ
National Centre for Earth Observation, University of Leicester, Leicester, UK

SANDRA BANSON
Université Clermont Auvergne, INSU-CNRS UMR 6016, Laboratoire de Météorologie Physique, F-63000 Clermont-Ferrand, France

Alessandro Battaglia
Earth Observation Science, Department of Physics and Astronomy, University of Leicester, Leicester, UK

National Center for Earth Observation, University of Leicester, Leicester, UK

JoEL VaN BAELEN
Université Clermont Auvergne, INSU-CNRS UMR 6016, Laboratoire de Météorologie Physique, F-63000 Clermont-Ferrand, France

Clermont-Ferrand, France

Wolfram WobrocK
Université Clermont Auvergne, INSU-CNRS UMR 6016, Laboratoire de Météorologie Physique, F-63000 Clermont-Ferrand, France

- Supplementary Material –

This supplementary material provides the different time-height evolution obtained considering the different locations illustrated on the Figure 4 of the main manuscript obtained in THOM-CTL (Figure 1) and in MORR-CTL (Figure 2). Note that the South Great Plains (SGP) site is located at the following coordinates: 36.60°N and 97.48°E.
Figure 1: Time-height evolution of the radar reflectivity obtained in THOM-CTL for the different locations represented by the crosses on the Figure 4 of the Part 1 paper.
Figure 2: Time-height evolution of the radar reflectivity obtained in MORR-CTL for the different locations represented by the crosses on the Figure 4 of the Part 1 paper.