Explaining the spread in global mean thermosteric sea level rise in CMIP5 climate models: Supplementary material

ANGELIQUE MELET *

LEGOS, UMR5566, CNRS, CNES, IRD, Universite Paul Sabatier, Toulouse, France

BENOIT MEYSSIGNAC

LEGOS, UMR5566, CNRS, CNES, IRD, Universite Paul Sabatier, Toulouse, France

*Corresponding author address: Angelique Melet, LEGOS/CNES, UMR5566, Toulouse, France.

E-mail: angelique.melet@legos.obs-mip.fr
This supplementary material presents figures for the 21st century under the RCP4.5 scenario.
List of Figures
Fig. 1. Calculation of \(\beta \), the fraction of the Earth’s energy imbalance stored in the ocean, during the 21st century under the RCP4.5 scenario. Each panel shows a scatter plot of global ocean heat uptake (relative to year 2006, in \(10^{22} \text{J} \)) against global mean time-integrated net TOA flux \(N \) multiplied by the Earth’s surface \(S \) (in \(10^{22} \text{J} \)) for a CMIP5 climate model. Values of \(\beta \) and of the coefficient of determination \(R^2 \) for the linear regression over 2006-2099 (black line) are indicated to the upper left of each panel. Each panel has the same axis, shown on the bottom left panel, and colorbar (indicating years).
Fig. 2. Calculation of ϵ, the expansion efficiency of heat, during the 21st century under the RCP4.5 scenario. Each panel shows a scatter plot of global mean thermosteric sea level rise (relative to year 2006, in mm) against ocean heat uptake (relative to year 2006, in 10^{22}J) for a CMIP5 climate model. Values of ϵ and of the coefficient of determination R^2 for the linear regression over 2006-2099 (black line) are indicated to the upper left of each panel. Each panel has the same axis, shown on the bottom left panel, and colorbar (indicating years).
Fig. 3. Scatter plots of global mean thermosteric sea level rise relative to year 2006, \(\Delta GMTSL \) (in mm), against values of \(S\epsilon \beta \int_{2006}^{t} N(t)dt \) (in mm), during the 21st century under the RCP4.5 scenario for each available model. Values of the slope and of the coefficient of determination \(R^2 \) for the linear regression over 2006-2099 (black line) are indicated to the upper left of each panel. Each panel has the same axis, shown on the bottom left panel, and colorbar (indicating years).
Fig. 4. Climate models global mean thermosteric sea level rise in 2099 relative to 2006 (in mm) under the RCP4.5 scenario computed from the 3D temperature and salinity fields (first group), from the climate coefficient relationship \(\epsilon \beta \int N(t)dtS \) (second group), from the climate coefficient relationship using the model ensemble mean values for \(\beta \) and \(\int N(t)dt \) (third group), for \(\epsilon \) and \(\int N(t)dt \) (fourth group) and for \(\epsilon \) and \(\beta \) (fifth group). The overbar denotes an averaging across the model ensemble. Only models conserving energy (\(\beta \) within 20% of 0.93) are included.
Fig. 5. Scatter plots of global mean thermosteric sea level rise relative to year 2006, $\Delta GMSTSL$ (in mm), against values of $S\int_{2006} F(t)dt$ (in 10^{24}J), during the 21st century for each available model under the RCP4.5 scenario. Values of the slope, μ, and of the coefficient of determination R^2 for the linear regression over 2006-2099 (black line) are indicated to the upper left of each panel. Each panel has the same axis, shown on the bottom left panel, and colorbar (indicating years).
Fig. 6. Climate models global mean thermosteric sea level rise in 2099 relative to 2006 (in mm) under the RCP4.5 scenario computed from the 3D temperature and salinity fields (first group), from the climate coefficient relationship ($\mu \int F(t)dtS$) (second group), from the climate coefficient relationship using the model ensemble mean values for $\int F(t)dt$ (third group) and for μ (fourth group). The overbar denotes an averaging across the model ensemble. Only models conserving energy (β within 20% of 0.93) are included.
Fig. 7. 21st century (under the RCP4.5 scenario) values of the transient thermosteric sea level response of the climate system, μ (first group), of $\epsilon\beta \kappa / [\kappa + \alpha \beta]$ (second group), of $\epsilon\beta \kappa / [\kappa + \alpha \beta]$ when only ϵ varies across models (third group), when only β varies across models (fourth group), when only κ varies across models (fifth group) and when only α varies across models (sixth group). The overbar denotes an averaging across the model ensemble. Units in m 10^{-25} J$^{-1}$.